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ABSTRACT

A frequently occurring problem in weapon systems analysis is the
comiutation of expected fractional damage of an area target engaged by

a salvo of area damaging rounds. Of particular interest is the case

involving both rouind to round and occasion to occasion errors. When the

number of rounds is large, the available solutions may encounter acute

computational difficulty. This report presents a computational

procedure, using Jacobi polynomials, which overcomes this difficulty.
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LIST OF SnLS

A,b Axes of elliptical target in x and y directions

Expected fraction of target damaged

N Number of rounds in salvo

pI(K) Single shot probability of damaing a target point (x,y) with
a round impacting at (uiv i )

p2 (uivl) Distri'ution of impact points of the i-th round about its,aim pcint

p (x,y) Distribution of (x,y)

p (C,1) Distribution of occasion to occasion errors

RT  Ta'get radius for circular target

(ui,vi) Impact point of the i-th round

w(z) Weighting function in Jacobi polynomials

(x,y) Target point

(M,) Common aim point for all weapons

a Common value of ax and a. when ax ay

aK Parameter in the damage function, pl(K)

ax, a Standard deviations of the round.to round errors

aca I Standard deviation of the occasion to occasion errors

Sr(z) The r-th Jacobi polynomial
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I. INMrODUMCION

A frequently occurring problem in weapon systems analysis is the

computation of the expected fraction of a target damaged by a salvo of

area damaging rounds all aimed at the same aim point. The many variations

of this problem are commonly referred to as coverage problems. Of

particular interest is the case involving both round to round and

occasion to occasion errors. The case involving only round to round
Ierrors has been treated by Groves. The more general case involving

both types of errors, in the form considered in this report, is
2

contained in an unpublished work by Grubbs. Wh1en the number of rounds

is large, both Groves' and Grubbs' procedures encounter acute

computational difficuIty. An analysis of this difficulty and the

presentation of an alternate computational procedure employing Jacobi

polynomials comprise the substance of this report.

Let p1(K) = p1 (Kl(uirVi), (x,y)) be the conditional probability of

damaging the target point (x,y) given that the i-th round impacts at

point (ui,vi) and let p2 (ui,vi) be the density function describing the

distribution of (ui,vi) about the aim point. If all rounds in a volley

are ide;tically distributed about the same aim point (9,11), then the

probability of damage over all impact points and all rounds i, i=1,2,...

is equal to 1 - (l-z) , where

z= pl(K) p2(uv) dudv. (
- m -aD

If one assumes (x,y) is distributed over the target area as

r3(x,y) and the intcnded aim point ( ,J) is itself a random variable

with density pM(,1V, then for N rounds aimed at the cormcn aim point,

the expected fraction of the target damaed, fN' is given by

References are listed on page 23.
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• r r r[l- (1_2)N) p(xy) p14(,j) dgddxdy (2)
fN 3

T

where T is the target area.

The difficulties arising in the solution of (2) are discussed in

Section II. A computational procedure using Jacobi polynomials to

overcome these difficulties is developed in Section III. In Section IV

an illustrative example is given and numerical results are presented in

Section V.

II. NATURE OF THE PROBLEM

The procedure used by Grubbs and Groves to solve (2) consists of
first expanding fN(z) using the binomial expansion

N

fN(z) = (l-z)N = (-l)j (i)z .  (3)

Thus (2) can be written as

• j,

j =1

where

For some target distributions and for some forms of the distributions

p (xY) and P4(gT1), G~ can be obtained analytically, see e.g.

Reference B3; however, in most cases approximations are required.

In some problems of interest, -N is desired for large N, e.g.,

N k 50. Although .. lies in the interval 0 fN f.l, the individual
terms of the series in (4) can become extremely large. As shown in

10



t ut'tn V, Table I., th. partial sums of this series may oscillate in

.n, Inttially with In-'r,:ao1ng magnitude until at some value of the

.'um=atLun Indvx t':v rngnitud- begins to decrease. For large N and

.:. J, theR quantity j G, may attain an order of magnitude, which

x,.d the, word length of a digital vomputer, even when double or

,.ipbe prec i 1ion omputation- are used. When this ::ltuation is present,,

thi,- roundof T1 rr,.r lit-urred at various stages of the computations exceeds

thi,, valu,, of f'-P he it-' Equation (4) is of no value in computing the

fr,,ctional da.'-ag , ,.

The oource of the computational difficulty is the binomial

,of:ri'ieentG arli;Lng in the expansion ct (1-z) N . Accordingly, the

approach used in thi: report is based on :tinding an alternate expression

for (1-z) . Thlz ic done in termc of Jacobi polynomials. In particular,

at- z:eek an approximation of th. form

f W -. (I-Z)ft F (z) = M rN r(Z' 0 c- z , 1 4S N (6)

r- O

wh.-re .(s) is the r-th Jacobi polynomial appropriate to the weighting

function

w(Z) -Z*(l-z) s ,a > - l, 0 > - .(T)

.ince (1-:) N is a polynomial of degree A, Equation (6) is an exact
representation when M - r:. The computation of fN(z) using Equation (6)

for large M. encounters roundoff problems similar to those present w, ii

using (3). The Jacobi polynomials, however, provide a weighted least

squares approximation and usually lead to high accuracy "ith only a few
terms. This is particulary true for the Chebyshev polynomials, a

special case of the Jacobi polynomials. These polynomials have the

advantage that each successive approximation is closer to fN(z), i.e.,

jFr+](z) - fN(z)I l Fpr(Z) - fN(z)I (8)

for r
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A new series for computing 'N employing the Jacobi series expansion

of (1-z)N is listed in Section IV. In Section V the behavior of this

series is compared to the series derived from the binomial expansion,

Equation (4). The objective of the studies performed was to determine

whether the new series could be truncated for some M before severe

roundoff error arose, and still retain two or three decimal accuracy

In f N

NN
III. EXPANSION OF (l-z)N IN JACOBI POLYNOMIALS

The Jacobi polynomial.s are orthiogonal in the interval 0 , z 1 , the

interval of irterest for z as defined by (1). The Jacobi polynomial

r (z) can be generated by the expression

4r(Z) -" cr z-0(l'z
" Ur(z),(9

and a is an arbitrary or normalizing constant. See, e.g., Hildebrand.4  ..r

The coefficient a rN in (6) is obtained from the integral

a (1lZr) c z)(l-z) N  r (z) dz- (9)

0

where

(r w(z) 4O.(z).dz. (12)

The integral in ( 6)) can be integrated by parts. Let u (l-z)N and

dv = U z) dz. Then du = - N((z)N z and v = z). Since

r r' rP'

o -- ) o12()d. (12)

(1)cnb nertdb at.LeIIt

The ntegal i (l-) an
dv= d.Tend -



a, (Cr I) (I-z) N-i r-l(z) dz. (13)

After integrating by parts r times we cbtain

0iar (= (/Y r  N(N-I) ... (N-r+l) Ur°(Z (1-z)N -  .

=[cN.:/Yr(N-r)j I zr (I-z)"+o dz
0

= [cr'lr( N-r):] B 
(1)

where P(x,y) is the beta function. As skiown by Hildebrand , page 271,

the quantity y r is given by

Yr = r (,)r r ' Ar c. zr-+c(l-z) r + a, dz

0

= (_l)rr ' Arr cr B(r0'+l, r+6+1), (15)

where Arr is the coefficient of zr in r (Z). The coefficients Arj in
r (Z) can be obtained by use of the hypergeometric series. See, e.g.,

Courant and Hilbert.5 r(z) is given by

r

4r(z) =I Arj z, (16)
J--O

where Arj is obtained by replacing s by (y+B+r+l), t by -r and v by

(1-+) in the J-th coefficient, Hi, of the 1lpergeometric series, i.e.,

jHj= II (s+i-1) (t+i-l)l(v+i-l)i, J=1,2,.. .,r (17)
i =1

and H = . Thus

15
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AT (r){ +JT. (ra82 .. (rd+

r (1) (rPe+)l+) (19)

r(r4a.8+1)

wher. -i(x) i.- tiv' t;a..ma functiort. Inse~rting tho results of' (15) and

(1',) Into (14.) an-A i.,p1uying thc relationship

we obtain

rN 'r r(luG)F(N+r4*.B+2)r(r+0+l) (20)

Equation (30) to made more amenable to computation by noting that

a oN ' (O +2) Y-)... (ofO ~ (21)

and

a. a Nrl(~+)rt(ra0l, (2?)

T . avoid an. indeterminancy for r -1) ot + B 1, a I should be written

WV. ILILJS'1rAT lEX~AMPLE

tt. t T (X, Y)tX /eL + 4 /

Pi (KI(u 1"i), (x,y)) =exp K(12,)[xu) + yvi)2J " 23

P2 (u i~vi (1/2rTaxoy) exp {1/)(j)/ax _1vjT)2/a2] (24)

P (x,y) =1/riab (25)

and

14



P491 (1/2rtcaa~ exp {(-1/2)[(CI/) + (I/0-)2}()

For the above example the ,ommon aiming point (Q,1) is distributed

about the target center, since the target center Is (0,C) and the mean

of (",') is (0,0). By inserting the above representations into

Equation (1) it can be shown that z reduces to

z q exp ((-112) I(c2+2) + (,-Y)/( ) , (27)

where

2, 2 2 211/2 (2)

From (2), (5), (6) and (16)

N r

a1 A G (29)
:N 1 rN rj j(

r--O J--

where G is given by Equation (5). By inserting the distributions

specified by Equations (25) through (28) into (5), by completing the

squares in z pM(,1) and integrating over C and 11, Gj can be shown to

reduce to

Gj = C(qJ/j) Ij; J=1,2,...N, (3c)

G = 1,0

whe re

C = 2 +o2)(a2+c2)] /2/ab, (51)
K x K 1/2

D~ = r(joa2+c72+o)lj11 (52)

2 11/2

and

i
4
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T

T being the ellipse x/a y2 2  1

Sinee Ar - 1, Equation (29) can be written

N t r

aL Z N C~* I C rN L Arj(q3 /j) J, (35)
r=O r=l Jul

The series developed by Grubbs 2 , using the binomial expansion, takes

the form

N

C 1. c -1) (qfj) Ij. (36)
J=1

When a, o a 0, i.e., no target location error, this series is

identical to that described by Groves I1

Analytical approximations for I are contained in the paper by
2Grubbs . I can also be obtained by numerical methods, e.g., by the*1 6method described by Breaux or alternatively as follows: Let

t .2

erf (t) = 2/W e (ix. OT)

On man computers this function is as standard as the trigonometric or

exponential functions and hence can be used to eliminate one integral

in (34). Equation (34) can then be written

I f = TT/E f exp: [-(1/:)2/EJ] er-f [a(i-y 2/b:2)1/2/I(VP Dj) dy. (38)

I is now in the form of a single integral and can easily be obtaineda
on a digital computer by use of standard subroutines.

16



W11,11| "X "' y  41' e"I' l , and tor A ir 'ular , , .,t; I,. ,

1 1i b IT9 oivbtain th,:- familiar re.;ult

z3 =Lz -.xp(-/o),()

6,, r, o i, the .! o m-ior, valu(! uf D and E j. When o ' c(, It t k
h, forml

z t -(.xp (-))(o)

wh:- rt - 2AC+'

To providu an Independent method for .Q. cA'.ng thY, w"uraoy ani

.',wrJ.e t Af th: .;.rie.; devi-lputd n thi.; rtrj:.rt, *.h n,:ri-a1 .;tuui,-.

for cr.-ifr w~wr# I 'uuLd b,, P', ,. ,,it,:u by Equation (0,.)

Fir thL 'ace Grubbo G,.rie. U identical t 'ruv.:; and :an be wrltt,.n

For thij cace Breaux7 has found an alternate erl,.

N

J=1

Thin Geries is easily summable for all value- of the parameters, oK, 'P

'T and N and provides an exact solution for comparison. Note that the

above simplifications are made only to provide an exact solution for

numerical comparison. The general structure of th. computational

procedure does not necessitate that Ij be' representable by (4O) since

as pointed out previously the Integral form of I i in Equation (58) can

be o'tained in fractions of a second by use of standard techniques for

numerical quadrature.

17



V. NUMERICAL RESJTM S

The numerical studies were designed to examine the accuracy and

rate of convergence c f the following series:

M

(1 %, 1 (..1)it ( (q3/J) Ij (143)

J=l

M M r
42) i Z c A- €q/ 1 (44)

r--O r=l J=

M r
43) -  C I c"" A (ql/j, 1 (5S L Ari /Jij

r=l J=l

Equation (43) is the series arising from (41), (44) is that arising from

(35). By setting z = 0 and M = N in (6) it can be shown that

N
SrN= 1.

r=O

Applying this result to Equation (35) leads to the third series SO
)

Numerical experiments, see Table I, indicate that when fN is not
(2) decreases monotonically and W) increasesequal to 0 or 1.0, SM ))wol hs emt

monotonically as M increases, both approacbing 'F. A weighted average

of the two sequences-- and-- would thus seem to offer a more

accurate approximation to f . Such a new sequence can be constructed

as follows: Let

(i) -1 i=2,3.

Then define

(14) (2= [()~ 2) ( 3)i 4)]{l Ftla2) + 1/M(3)~ (146)

18
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I
t'h , e h h tt' -t A L-] ,h -,equence are inverzely prohrtlona to

! ,l', h : with _initlL.r & wuuld sf.,:mLr1gLy b,: t. :'tt

" 't 'IL iI v .y, ',4 ouan be viewi a. thi. qu' n, C ,mii by

'. i t tr, t't., ,tX th," Li rvar extrapolatior ._,f ihe tw,, z:qooii.:, i)

h,,lti, eo r#u!mvi. ,:xpxriments, not Listud hert,., indicate that

h,.. t. *.,,rgn-, 1,: attained fur weight functions having ( S -o/t,

w(--) - / 112 ( -z)" 1

FoXr this weight function the Jacobi polynomialz reduce to the

".hlfted" Chebyahev polynomial.;. These polynomials generally have tnt.

b.,,;t convw.rgen,'e properties, us verified in this c.ac by experjment.

Dl;cuznoion of Results

The critical parameterc effecting the accuracy and convergence of
Lhe r or. otlon; are q and N. When a, z al = 0, and ax = ay = U,

Equation (28) can be written

a' (1-q)/q. (47)

The oa;e;- tudied were for aK  1.O, q = .01, .1, .3, .5, .7, .9,

: - 53, luO, 15w, 200, 300, 14o, 500, 1000, and TR 50 with a ionztraired

by Equation (47).

A comparison of the convergence of th,-e four series, Equation:; (43)

through (46) is illustrated for a typical case in Table I. The series

arising from the binomial expansion is seen to oscillate with extremely

large magnitude and does not provide a useful result until most of the

511 terms are added. (2) and 3) on the other hand, approach the
(41

trut- .;olut~on monotonically as does SM , the weighted average. It

zhould be noted that the computations were performed on BPLESC

(Balistic Research Laboratories Electronic Scientific Computer) which

ha, a useable word length equivalent of 256 or approximately 1017. The

normal word length on must commercial machines is approximately 10

19



For this reason it seems unlikely that S) could be summed at all;

for this case, on a cormercal machine, exccpt by uze of double

precision.

Table II is a listing of the parametric study to compare the

accuracy of the four series. For each pair of values (!,q), the five

entries in succession are the exact solution, S0 followed by

, i=1,2,5,4. The asterik5 (*) denote that no useful result could be

obtained from The sequences ,) i=1,2,3,4 were terminated either

when M = N, or when any intermediate number exceeded 105. By inapection
of Table I it is seen that S) is the most accurate s' ries with a

maximum error of .0002. Note that 31 of the 48 entries could not be

ccmputed using the series derived from the binomial expansion. TL2

average computation time for the cases studied was approximately 1.4

seconds per case on BRLESC.

VI. CONCUJSIOISI

A computational procedure for determining expected fractional

I damage for an area target engaged by a salvo of area kill weapons has

been presented. The procedure employs Jacobi polynomials and in most

cases the successive approximations converge rapidly to the true

solution. Two new series solutions have been presented, one increasing

monotonically and the other decreasing monotonically with the sumiation

index, both approaching the true solution. A method for averaging the

two solutions has also been presented which accelerates the convergence,

thereby making the mcthod useful even in extreme cases where numneric!al

difficulties force the termination of the series before convergence

of either has been reached.

20



TABLE I
COMPARISON OF SERIES CONVERGENCE

42)(3) .4M M N4__ _

I .40000C0(- I .7646C313 .24969173- 3 .14T2)7-- 2
2 -. 401000,, .618C6674 .7675216 '- 3 . (2158- 2

.5i52A 1 .W542272 .13043077- 2 .,.,,27"- 2
4 -. 2974514. 2 .57,-4304 .18414197- 2 .35475r7- 2
5 .1N267 i 5 .55E42 .233040C5- 2 .5&'52 6- 2
6 -. 1C58432 4 .1960)150 .27434943- 2 .57690745- 2
7 .500&157(, 4 .136>4e4 .5O4?220- 2 .5"74-.-4-
e -. 20C705t2 5 .91 30195- 1 .55441129- 2 . 6C7?,5-
9 .751)-6711 5 .60424990- 1 .5537C562- 2 -5'.- 2

10 -. 2431, 6 .38F73154- 1 .3672953- 2 .389552CC- 2
11 .7040556, 6 .24742770- 1 .3764G344- 2 .35,9-25- 2
12 -. I"557126 7 .1585610C7- I .3827131 - 2 .63-2
15 .43519622 7 .10496434- 1 .38593132- 2 .3903-17- 2
14 -.. 2902972 7 .73983605- 2 .388071E8- 2 .3r 565-2
15 .18171-°76 8 .56827172- 2 .58927868- 2 .39052895- 2
16 -. 32515228 8 .47729915- 2 .38992717- 2 .39054557- 2
17 .5554e59 8 .43u14o50- 2 .59026279- 2 .39055786- 2
19 -. 8o45cc,6o 8 .40874159- 2 .59042727- 2 ..1560C7- 2
i1 .11169934 9 .39855488- 2 .39050474- 2 .3)056285- 2
2 -. 1425 9 .393755'1- 2 .59C5394 - 2 .39 -6358- 2
li .168"6754 9 .39181221- 2 .3c055429- 2 .5965681- 2

22 -.19425666 9 .391060- 2 .39056 C36- 2 .39,,5697- 2
25 .k5?22L4 9
24 -. 7i26 19 9 8 .

4 50
26 -. 11C9445 9
271 .874 " 3, 8 q .9
2 -. 59707817 8
29 .374o)4o8 8 K
3, -. 21701905 8 RT 50.0
31 .11561148 8
52 -. 56522t 7
55 .2537117 7 -
34 -. 10414660 7
3v .3894360 635 -. 182236G 6 Exact Solution .39C56398F-02
56 -.-132246,,* C
57 .4c605800 r
53 -. 11214117' 5 *

4 .27680621 4 This column of numbers indicates the power
of ten by which to multiply the table entry40, -. 66o124o 5 W)

41 .11657546 3 to obtain S .
42 -.19464392 2
43 .2784575 1
44 -. 326c,155
45 .36581647- 1
46 .14242527- 2
47 .40448705- 2
48 .39005318- 2
49 .19057258- 2
50 .3gO56342- 2 1
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TABLE 11
PARAMETRIC SImY OF SERIES ACcuRACY

q e 8 -1/2, f =cm 0, IT = 50, oK - I

.01 .1 .5 .5 .7 

S0 .03558 .0175& .00679 .o060 .00475 .00391
S, .05558 .0175P 7 c? 0o(C . 7 ,(47.z .00 2

0 S 0.555P )(..... .0879 C .473 .00591
5 .05558 .01758 .O0879 .Go6 9 .- 4-75 .GG5"1

.0558 .C1758 .00879 .006 . ';O4 73 .0C'1

So .c6585 .02508 .01-62 .071; .3( 552 .0C4 52
S .06585 .- 5081 .01062 * * *

100 S .06585 .02508 .01062 .0072 .cc5 .1
53 .06585 .02508 .01062 .00719 .0,55? .00451

• 06585 .02308 .01062 .00719 .0(552 .00452

S .08673 .0263] .01170 .00784 .005 8 .Co488
Sl .08673 .0265- * * * *

150 S2 .08873 .02' *. .01174 .00879 .0155 0146
S .08675 .02 ,51 .0117o .00782 .00594 C048

S' .08675 .02651 .01170 .00784 .oo 598 .CIO47

So .10566 .02860 .01246 .0c8?9 .00651 .0515
S1  .10566 .02860 * * * *

200 S2 .10566 .02860 .01285 .01255 .02055 .02927
S3 .10566 .02860 .01246 .00824 .00617 .G(494
3' .10566 .02860 .01246 .00829 .00651 .C0515

.13522 .0184 .01554 .00894 .00677 .C0549
S' .13522 * * * * *

3r)0 S2 .13522 .03184 .01717 C,2855 .05168 .07106
S3 .13522 .C3184 .0D1346 .00866 .0065i .0c-4 96

.15522 .05184 .01554 .00895 .00675 .00547

S0 .15747 .03414 .01431 .00-40 .00711 .00575

5 .15747 * * * *
400 s? .15747 .03416 .02605 .05259 .08958 .11640

S .15747 .05414 .043 .00876 .00625 . Obe
S -•1574T .05414 .0145. .( Oc8 . 00706 .GC 570

SO .17510 .0352 .01490 .00-76 .00736 .00594
S .17510 * * * * *

500 .17510 .03604 .03905 .08015 .12731 .15958
S3  .17510 .03591 .01L55 .00874 .0c61i .00468
S' .17510 .035512 .01.88 .00971 .0729 .00587

SO .25042 .04146 .01675 .01C67 .0 15 .C0656
Si .25042 * * * * *

1000 53 .23119 .04780 .12645 .21156 .2M,47 .31825
53 .22958 .04099 .1408 .00791 .00525 .00895
S' .23039 .04145 .01661 •01067 .00795 .00655
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